Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
BMJ Case Rep ; 13(11)2020 Nov 03.
Article in English | MEDLINE | ID: covidwho-1186251

ABSTRACT

Fever is a widely recognised presenting symptom of COVID-19. Consequently, other febrile illnesses may be difficult to distinguish from COVID-19-leading to delays in diagnosis and treatment. One such illness is murine typhus, a fleaborne illness with worldwide distribution caused by Rickettsia typhi It often presents with fever, headache and myalgia, all of which have been commonly reported with COVID-19. Although the disease is usually mild with a good prognosis, there have been reports of severe illness and death. I present a case of murine typhus in a young male who had 2 weeks of headaches and daily fevers during the COVID-19 pandemic. He was ultimately tested for murine typhus when his occupation as a dog trainer was queried, and he experienced resolution of symptoms after treatment with doxycycline. During this pandemic, clinicians must be vigilant of other febrile illnesses whose symptoms overlap with COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Doxycycline/administration & dosage , Fever/diagnosis , Occupational Exposure/analysis , Pneumonia, Viral/diagnosis , Rickettsia typhi/isolation & purification , Typhus, Endemic Flea-Borne , Adult , Ambulatory Care/methods , Animals , Anti-Bacterial Agents/administration & dosage , Betacoronavirus , COVID-19 , Diagnosis, Differential , Disease Reservoirs/microbiology , Disease Transmission, Infectious , Dogs , Fever/etiology , Humans , Male , Pandemics , SARS-CoV-2 , Treatment Outcome , Typhus, Endemic Flea-Borne/diagnosis , Typhus, Endemic Flea-Borne/drug therapy , Typhus, Endemic Flea-Borne/microbiology , Typhus, Endemic Flea-Borne/physiopathology
3.
Sci China Life Sci ; 64(6): 942-956, 2021 06.
Article in English | MEDLINE | ID: covidwho-1056056

ABSTRACT

Bats are a potential natural reservoir for SARS-CoV-2 virus and other viruses detrimental to humans. Accumulated evidence has shown that, in their adaptation to a flight-based lifestyle, remodeling of the gut microbiota in bats may have contributed to immune tolerance to viruses. This evidence from bats provides profound insights into the potential influence of gut microbiota in COVID-19 disease in humans. Here, we highlight recent advances in our understanding of the mechanisms by which the gut microbiota helps bats tolerate deadly viruses, and summarize the current clinical evidence on the influence of gut microbiota on the susceptibility to SARS-CoV-2 infection and risk of COVID-19 leading to a fatal outcome. In addition, we discuss the implications of gut microbiota-targeted approaches for preventing infection and reducing disease severity in COVID-19 patients.


Subject(s)
COVID-19/microbiology , Chiroptera/microbiology , Disease Reservoirs/microbiology , Gastrointestinal Microbiome/immunology , Animals , COVID-19/immunology , COVID-19/pathology , Chiroptera/immunology , Chiroptera/virology , Disease Reservoirs/virology , Disease Susceptibility/immunology , Disease Susceptibility/microbiology , Disease Susceptibility/pathology , Flight, Animal , Gastrointestinal Microbiome/genetics , Humans , Immunity , SARS-CoV-2
4.
Med Sci (Paris) ; 36(6-7): 642-646, 2020.
Article in French | MEDLINE | ID: covidwho-851322

ABSTRACT

TITLE: Épidémies: Leçons d'Histoire. ABSTRACT: Jusqu'au milieu du XVIIIe siècle, l'espérance de vie était de 25 ans dans les pays d'Europe, proche alors de celle de la préhistoire. À cette époque, nos ancêtres succombaient, pour la plupart, à une infection bactérienne ou virale, quand la mort n'était pas le résultat d'un épisode critique, comme la guerre ou la famine. Un seul microbe suffisait à terrasser de nombreuses victimes. L'épidémie de SARS-CoV-2 est là pour nous rappeler que ce risque est désormais à nouveau d'actualité. Si son origine zoonotique par la chauve-souris est probable, la contamination interhumaine montre son adaptation rapide à l'homme et permet d'évoquer ainsi la transmission des épidémies, qu'elle soit ou non liée à des vecteurs, ces derniers pouvant représenter dans d'autres occasions un des maillons de la chaîne.


Subject(s)
Bacterial Infections/epidemiology , Epidemics/history , Virus Diseases/epidemiology , Adult , Animals , Bacterial Infections/history , Betacoronavirus/physiology , COVID-19 , Cattle , Chiroptera/virology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/history , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/virology , Coronavirus Infections/epidemiology , Disease Reservoirs/microbiology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Dogs , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Ancient , Humans , Life Expectancy/history , Life Expectancy/trends , Longevity/physiology , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Sheep/microbiology , Sheep/virology , Swine/microbiology , Swine/virology , Virus Diseases/history , Zoonoses/epidemiology , Zoonoses/virology
5.
PLoS Negl Trop Dis ; 14(8): e0008251, 2020 08.
Article in English | MEDLINE | ID: covidwho-788854

ABSTRACT

Yersinia pestis, the bacterial causative agent of plague, remains an important threat to human health. Plague is a rodent-borne disease that has historically shown an outstanding ability to colonize and persist across different species, habitats, and environments while provoking sporadic cases, outbreaks, and deadly global epidemics among humans. Between September and November 2017, an outbreak of urban pneumonic plague was declared in Madagascar, which refocused the attention of the scientific community on this ancient human scourge. Given recent trends and plague's resilience to control in the wild, its high fatality rate in humans without early treatment, and its capacity to disrupt social and healthcare systems, human plague should be considered as a neglected threat. A workshop was held in Paris in July 2018 to review current knowledge about plague and to identify the scientific research priorities to eradicate plague as a human threat. It was concluded that an urgent commitment is needed to develop and fund a strong research agenda aiming to fill the current knowledge gaps structured around 4 main axes: (i) an improved understanding of the ecological interactions among the reservoir, vector, pathogen, and environment; (ii) human and societal responses; (iii) improved diagnostic tools and case management; and (iv) vaccine development. These axes should be cross-cutting, translational, and focused on delivering context-specific strategies. Results of this research should feed a global control and prevention strategy within a "One Health" approach.


Subject(s)
Neglected Diseases/prevention & control , Plague/prevention & control , Yersinia pestis , Animals , Disease Outbreaks/prevention & control , Disease Reservoirs/microbiology , Humans , Insect Vectors , Madagascar/epidemiology , Neglected Diseases/epidemiology , Plague/epidemiology , Plague/transmission , Rodentia , Siphonaptera
SELECTION OF CITATIONS
SEARCH DETAIL